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Abstract

In this work a modal analysis was employed to study generation of the second harmonics of shear
horizontal (SH) modes in a solid plate. Under second order perturbation, second-harmonic generation will
occur accompanying SH mode propagation due to the bulk elastic non-linearity of plate material. In solid
plate the total second-harmonic fields of a SH mode propagation are regarded as sum of the fields of a
series of double frequency Lamb modes (DFLMs). The contribution of each DFLM component to the total
second-harmonic fields is dependent of the difference of phase velocities of the corresponding DFLM and
SH mode. The analysis results show that the DFLM field component may have cumulative growth effect
once its phase velocity exactly or approximately equals that of a SH mode. It is also found that the fields of
the total second harmonics of a SH mode are only symmetrical. The examples of field distributions of
several DFLMs on the plate surface are considered.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The propagation of guided wave modes such as Lamb modes and shear horizontal (SH) modes
is well understood and encountered in many practical situations [1,2]. In general, each guided
wave mode can be though of as superposition of partial bulk acoustic waves satisfying the
corresponding boundary conditions. The characteristics of guided wave modes can be used in the
non-destructive evaluation of plate materials [3]. Recently, it is being realized that the linear
characteristics of guided wave modes are often not sufficient. The non-linear elasticity of
engineering materials may be a very sensitive indicator of some defect states that are difficult to
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detect by other means [4,5]. Thus, the non-linear effect of guided wave modes is evoked,
necessitating a non-linear analysis of guided wave modes.

Generally, the non-linear problem of a guided wave mode is very difficult to solve. However,
often the elastic non-linearity is small and a perturbation approach can be applicable [6]. Whereas
a SH mode is one of the simplest guided wave modes, investigation of the non-linear effect of SH
modes will lay a foundation for studying that of the other guided wave modes. For simplicity, in
this article, all analyses are performed for SH modes, and second order perturbation is applied,
and only the elastic non-linearity is considered. Under second order perturbation, generation of
the second harmonics will occur as SH modes propagate in the solid plate. In general, the
dispersive nature of SH modes ensures that there is no strong non-linear effect. Thus, it is difficult
to use the dynamic non-linear elasticity of SH modes of a solid plate for its characterization.

Theoretical analysis of second-harmonic generation with a cumulative growth effect was
reported in the literature by Deng [7]. It is found that there is a strong non-linear effect once the
phase velocity of a SH mode propagation equals the longitudinal velocity of the plate material,
and that the corresponding fields of the second harmonics are symmetrical. In that theoretical
study the analysis method used to investigate the problems of non-linear acoustic reflection at an
interface is applied [8]. Although some primary interesting results have been obtained, there are
still problems to be solved such as that non-cumulative second-harmonic terms cannot be
determined. Thus, the further analysis is needed.

Second order perturbation reduces a complicated non-linear problem to the linear one with
known sources, so that linear analysis techniques can be employed even if the original problem is
non-linear. It is well known that the modal analysis offering an effective approach for treating the
problem of waveguide excitation is widely applied in acoustics [2,9–11]. The principle of a modal
analysis is to express the excited fields as superposition of normal modes obtained in a stress-free
waveguide. The contribution of each normal mode component is determined by the
corresponding excitation source distribution. To the author’s knowledge, no effort to date has
been paid on the analysis of second-harmonic generation of guided wave modes using a modal
analysis.

In this paper the modal analysis of waveguide excitation is employed to study second-harmonic
generation of SH modes under second order perturbation. The analysis process shows a clear
insight into physical process of second-harmonic generation of SH modes, and the solution
obtained overcomes the shortcoming of the previous results that non-cumulative second-
harmonic terms cannot be determined.

2. General considerations

Under second order perturbation the motion equations governing the fundamental frequency
(primary) and double frequency waves of a solid are given by [6,12]

r
@2uð1Þ

@t2
� ðkþ 4m=3Þrðr � uð1ÞÞ þ mr� ðr � uð1ÞÞ ¼ 0;

r
@2uð2Þ

@t2
� ðkþ 4m=3Þrðr � uð2ÞÞ þ mr� ðr � uð2ÞÞ ¼ Fðuð1ÞÞ; ð1Þ
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where uð1Þ and uð2Þ denote the fundamental frequency and the double frequency displacements,
respectively; r; k and m are mass density and second order elastic constants of the solid. We
assume that the material of a solid plate is isotropic and lossless, and that the position of
excitation source of SH modes is located at z ¼ 0; and that only the mth SH mode with angular
frequency o is generated in the plate of thickness 2d (Fig. 1). The solution to the mth SH mode
satisfying the first of Eq. (1) takes the form [2,7]

uðmÞTi ¼ uðmÞTi #x exp½jKðmÞTi � r� jot
; i ¼ 1; 2 ð2Þ

with

KðmÞTi � r ¼ kðmÞz þ ð�1Þi�1aðmÞkðmÞy; KðmÞTi

�� �� ¼ KT ¼ o=cT ;

kðmÞ ¼ KT sin yðmÞT ; cos yðmÞT ¼ aðmÞT sin yðmÞT ; aðmÞT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðmÞ=c2T

h i
� 1

r
; ð3Þ

where the subscript ‘m’ denotes the ordinal number of a SH mode, cT is the transverse velocity of
plate material, kðmÞ ¼ o=cðmÞ is the oz-axis component of KðmÞT1 and KðmÞT2; cðmÞ is the phase
velocity of the mth SH mode whose existence is postulated, and the other physical quantities are
shown in Fig. 1. Here and below a physical quantity with ‘^’ means an unit vector of the
corresponding quantity. The displacement component along the ox-axis is written as

uð1Þx ¼ uðmÞT1 exp½jKðmÞT1 � r� jot
 þ uðmÞT2 exp½jKðmÞT2 � r� jot
: ð4Þ

The phase velocity of the mth SH mode determined by the boundary condition (stress tensor
component at y ¼ 7d is zero, i.e., @uð1Þx =@yjy¼7d ¼ 0Þ is given by [2,7]

cðmÞ ¼
cTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� mcT=4fd
� �2q ; ð5Þ

where f is the excitation frequency, and fd is the product of frequency and half of plate thickness.
There is a relation between uðmÞT1 and uðmÞT2; i.e., uðmÞT1 ¼ ð�1ÞmuðmÞT2:
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Fig. 1. Acoustic fields of the mth SH mode and the nth DFLM.
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Considering a single SH mode with ordinal number m propagating in a solid plate, under
second order perturbation, there is a bulk driving force of double frequency in the plate due to the
bulk elastic non-linearity of the plate material (i.e., Fðuð1ÞÞ in the second of Eq. (1)). This bulk
driving force may be regarded as the source of waveguide excitation.

For the mth SH mode the fundamental frequency displacement field in the plate is uð1Þ ¼
uðmÞT1 þ uðmÞT2 ¼ uð1Þ

x #x: The driving force in the plate due to the bulk elastic non-linearity is found
to be [omitting the factor expð�j2otÞ] [7,12]:

Fðuð1ÞÞ ¼ FðmÞTi
#KðmÞTi expðj2KðmÞTi � rÞ þ FðmÞT1�T2 #z expðj2kðmÞzÞ; i ¼ 1; 2;

FðmÞTi ¼ �jðkþ 4m=3þ A=2þ BÞK3
T u2

ðmÞTi;

FðmÞT1�T2 ¼ �j2fmþ A=4� cos 2yðmÞT ðkþ m=3þ A=4þ BÞguðmÞT1uðmÞT2kðmÞK
2
T ; ð6Þ

where A; B (here C does not appear) are third order elastic constants used by Landau and Lifshitz.
It is readily seen that the direction of Fðuð1ÞÞ is in the yz plane.

Besides Fðuð1ÞÞ in the interior of solid plate, there is the stress tensor of double the fundamental
frequency at y ¼ 7d; denoted by Pð2Þðuð1ÞÞ: Here Pð2Þðuð1ÞÞ corresponds to the quadric term of
expression of the first Piola–Kirchhoff stress tensor. The three tensor components of Pð2Þðuð1ÞÞ
associated with the mth SH mode take the following forms [12]:

Pð2Þ
xy ¼ 0;

Pð2Þ
yy ¼ mþ

A

4

	 

@uð1Þx

@y

	 
2

þ1
2
ðk� 2

3
mþ BÞ

@uð1Þ
x

@y

	 
2

þ
@uð1Þ

x

@z

	 
2
( )

;

Pð2Þ
zy ¼ mþ

A

4

	 

@uð1Þ

x

@y

@uð1Þ
x

@z
: ð7Þ

On basis of the boundary condition of SH mode, i.e., @uð1Þx =@yjy¼7d ¼ 0; there are the relations at
the surfaces y ¼ 7d:

Pð2Þ
xy

���
y¼7d

¼ 0; Pð2Þ
zy

���
y¼7d

¼ 0;

Pð2Þ
yy

���
y¼7d

¼ 2 k� 2
3
mþ B

� �
ð�1Þmþ1k2

ðmÞu
2
ðmÞT1 expðj2kðmÞzÞ: ð8Þ

According to the modal analysis of waveguide excitation, the volume driving force Fðuð1ÞÞ and
the surface stress tensor component Pð2Þ

yy jy¼7d may be thought of as a volume source and a surface
source, respectively, and the function of Fðuð1ÞÞ and Pð2Þ

yy jy¼7d is to produce a series of double
frequency Lamb modes (DFLMs) [2,9]. It should be noted that there is no double frequency SH
mode generation since the ox-component of Fðuð1ÞÞ is zero and Pð2Þ

xy ¼ 0: The fields of the DFLM
with ordinal number n are shown in Fig. 1, where the field quantities are assumed to be
independent of the x co-ordinate, k

ðLÞ
ðnÞ ¼ 2o=c

ðLÞ
ðnÞ is the oz-axis component of the nth DFLM wave

vectors K
ðLÞ
ðnÞTi and K

ðLÞ
ðnÞLi (i ¼ 1; 2), and c

ðLÞ
ðnÞ is the corresponding phase velocity. The total second

harmonics of the mth SH mode can be expressed by the mode expansion of DFLMs [2,9]

U
ð2oÞ
ðmÞ ðy; zÞ ¼

X
n

anðzÞu
ðLÞ
ðnÞ ðyÞ; ð9Þ
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where

u
ðLÞ
ðnÞ ðyÞ ¼

X2

i¼1

u
ðLÞ
ðnÞTi þ u

ðLÞ
ðnÞLi

h i
expð�jk

ðLÞ
ðnÞ zÞ ¼ u

ðLÞ
ðnÞyðyÞ #y þ u

ðLÞ
ðnÞzðyÞ#z

h i
ð10Þ

is the field function of the nth DFLM, and anðzÞ is the nth DFLM amplitude associated with z.
The equation governing anðzÞ is given by [2]

4Pnn

@

@z
� jk

ðLÞ
ðnÞ

	 

anðzÞ ¼ fVnðzÞ þ fSnðzÞ; ð11Þ

where

fVnðzÞ ¼
Z þd

�d

j2o *u
ðLÞ
ðnÞ ðyÞ � Fðu

ð1ÞÞ dy ð12Þ

and

fSnðzÞ ¼ j2o*u
ðLÞ
ðnÞ � P

ð2Þðuð1ÞÞ � #y
���y¼þd

y¼�d
¼ j2o *u

ðLÞ
ðnÞy Pð2Þ

yy

���y¼þd

y¼�d
ð13Þ

are the excitation functions due to both volume source Fðuð1ÞÞ and surface stress tensor component
Pð2Þ

yy jy¼7d ; and Pnn is the average power flow per unit width along the x-axis for the nth DFLM

Pnn ¼Re

Z þd

�d

�
1

2

*@

@t
uðnÞðyÞ � Tn � #z

� �
dy

¼Re

Z þd

�d

ð�joÞ *u
ðLÞ
ðnÞyðyÞ TðnÞyzðyÞ þ *u

ðLÞ
ðnÞzðyÞ TðnÞzzðyÞ

h i
dy: ð14Þ

In Eqs. (12)–(14) and below, a variable with ‘B’ means the complex conjugate of the
corresponding variable. Tn is the stress tensor concerned with the nth DFLM, and its
components, TðnÞyz and TðnÞzz are presented in Appendix A. Further the expression of anðzÞ is
found to be

anðzÞ ¼ a0
n

Z z

0

d�1 exp½jð2kðmÞ � k
ðLÞ
ðnÞ Þx
 dx exp½jkðLÞ

ðnÞ z
 ð15Þ

and

a0
n ¼

½fVnðzÞ þ fSnðzÞ
expð�j2kðmÞzÞ
4Pnn

d

¼
expð�j2kðmÞzÞ

4Pnn

d

Z þd

�d

j2o ½ *uðLÞ
ðnÞyðyÞ FðmÞyðyÞ þ *u

ðLÞ
ðnÞzðyÞ FðmÞzðyÞ
 dy

�

þ j2o *u
ðLÞ
ðnÞy Pð2Þ

yy

���y¼þd

y¼�d

�
; ð16Þ

where FðmÞyðyÞ and FðmÞzðyÞ are the oy and oz components of Fðuð1ÞÞ [neglecting the factor
expðj2kðmÞzÞ]. Further analysis indicates that the scale of a0n is u2

ðmÞT1d�1: The integral in the right-
hand side of Eq. (15) is readily found to beZ z

0

d�1 exp½j2kðmÞx� jk
ðLÞ
ðnÞ x
 dx ¼

sin½kðmÞ � k
ðLÞ
ðnÞ =2
z

½kðmÞ � k
ðLÞ
ðnÞ =2
d

exp½jkðmÞ � jk
ðLÞ
ðnÞ =2
z: ð17Þ
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From Eqs. (15) and (17) it is easy to find that anðzÞ is linearly proportional to propagation distance
z once the condition kðmÞ ¼ k

ðLÞ
ðnÞ =2 (i.e., cðmÞ ¼ c

ðLÞ
ðnÞ ) is satisfied. It is also found that there is a

cumulative growth effect as cðmÞEc
ðLÞ
ðnÞ where the magnitude of anðzÞ accumulates with z as the form

of sine function within the first quadrant. When the mth SH mode propagation arrives at

zðnÞ ¼
c
ðLÞ
ðnÞ cðmÞd

4fdðcðLÞðnÞ � cðmÞÞ
ð18Þ

there is maximum of the magnitude of anðzÞ: After that the magnitude of anðzÞ starts to decrease.
The value of z(n) can be used to characterize the degree of cumulative growth effect of the nth
DFLM component. As an example, zðnÞ ¼ N (i.e., cðmÞ ¼ c

ðLÞ
ðnÞ ) means the case in which there is a

complete phase match for the nth DFLM generated by excitation functions fVnðzÞ and fSnðzÞ in
different position (denoted by z). In a word the contribution of the nth DFLM component to
U

ð2oÞ
ðmÞ ðy; zÞ is determined by the difference between c(m) and c

ðLÞ
ðnÞ :

From Eqs. (15) and (17) it is easy to find that aðnÞðzÞ ¼ 0 as z ¼ 0; which means that the initial
condition of harmonic generation is satisfied for the nth component of DFLMs. Note that, in the
present analysis, only the propagation modes of DFLMs is considered and the evanescent modes
are neglected. The influence of evanescent modes can be negligible after some propagation
distance. Propagation modes play a dominant role.

For the nth DFLM there are the relationships:

u
ðLÞ
ðnÞyðyÞ ¼ �u

ðLÞ
ðnÞyð�yÞ; u

ðLÞ
ðnÞzðyÞ ¼ u

ðLÞ
ðnÞzð�yÞ; symmetric case;

u
ðLÞ
ðnÞyðyÞ ¼ þu

ðLÞ
ðnÞyð�yÞ; u

ðLÞ
ðnÞzðyÞ ¼ �u

ðLÞ
ðnÞzð�yÞ; antisymmetric case: ð19Þ

From the form of Fðuð1ÞÞ there are

FðmÞyðyÞ ¼ �FðmÞyð�yÞ; FðmÞzðyÞ ¼ FðmÞzð�yÞ: ð20Þ

Combining Eqs. (8), (16), (19) and (20) yields

a0
n ¼ 0; antisymmetric case;

a0na0; symmetric case;
ð21Þ

which means that only the symmetric DFLMs occur accompanying the mth SH mode
propagation. So the field of the total second harmonics U

ð2oÞ
ðmÞ ðy; zÞ consisting of a series of

DFLMs is symmetrical.
As described above, the modal analysis technique of waveguide excitation is successfully

applied in analyzing second-harmonic generation of a single SH mode. There are body forcing
and surface stress tensor functions due to the elastic non-linearity of plate material as a SH mode
propagates in the plate. Second order volume forcing and surface stress tensor functions give rise
to generation of a series of DFLMs. The contribution of each DFLM is associated with the
difference of phase velocities of SH mode and the DFLM. The degree of cumulative growth effect
of DFLM component can be characterized by zðnÞ: Under the prerequisite of second order
perturbation, all analyses are exact. Obviously, the present analysis technique of second-harmonic
generation overcomes the previous problems of indeterminacy of the non-cumulative harmonic
terms [7].
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3. Computation analyses

To understand the above analysis results, we perform a computational analysis. The material of
elastic plate is assumed to be aluminium. The corresponding physical parameters are:
r ¼ 2700 kg/m3, k ¼ 74GPa, m ¼ 26GPa, A ¼ �100GPa, B ¼ �600GPa [13]. Fig. 2 shows
the dispersion curves of SH modes and symmetric DFLMs (because only symmetric
DFLMs occur). The dispersion curves of SH modes are calculated by Eq. (5), and the dispersion
curves of the symmetric DFLMs are computed by the dispersion relation of symmetric Lamb
modes using 2f instead of f [2]. In Fig. 2 the intersections of two sets of dispersion curves satisfy
cðmÞ ¼ c

ðLÞ
ðnÞ :

In order to determine anðzÞ; a0
n must be computed first. Fig. 3 gives the curves of a0

n for S2; S3;
and S4 DFLMs, where the ordinal number of SH mode is 3. The value of anðzÞ can be determined
after a0

n is given. In Fig. 3(d) there are intersections between the beeline L and the dispersion
curves [there is cð3Þ ¼ c

ðLÞ
ð3Þ at intersection P]. The physical parameters of these intersections

corresponding to the different DFLMs are listed in Table 1.
Generally, the measurement of the second-harmonic fields is performed on the plate surface.

Fig. 4 presents the amplitudes of anðzÞu
ðLÞ
ðnÞ ðyÞ (see Eq. (9)) for S2; S3; and S4 DFLMs on the plate

surface. The results show that S3 DFLM amplitudes accumulate with propagation distance z as
cð3Þ ¼ c

ðLÞ
ð3Þ ; and that the displacement amplitudes of S2 and S4 DFLMs oscillate greatly as there is

an obvious difference between cð3Þ and c
ðLÞ
ðnÞ (n ¼ 2; 4, zðnÞ is small). From Fig. 4 it is obvious that

the contribution of S2 and S4 DFLMs to U
ð2oÞ
ðmÞ ðy; zÞ is much smaller than that of S3 after the third

SH mode propagate some distance. In this case the contribution of S2 or S4 DFLMs to U
ð2oÞ
ðmÞ ðy; zÞ

may be neglected.
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Fig. 2. Dispersion curves of SH and symmetric DFLM modes.

M.-X. Deng / Journal of Sound and Vibration 266 (2003) 107–117 113



ARTICLE IN PRESS

Fig. 3. The curves of a0n versus fd for some DFLMs, the ordinal number of SH mode is 3: (a) for S2 DFLM; (b) for S3

DFLM; (c) for S4 DFLM; (d) dispersion curves in the near region of intersection P:

Table 1

Some parameters concerned with the intersections in Fig. 3(d)

fd (MHzmm) cð3Þ or c
ðLÞ
ðnÞ (MHzmm) a0n=u2

ðmÞT1 d�1

Third SH mode 2.664 6.350 —

S2 DFLM 2.664 4.483 (�2.88�10�3, 0)

S3 DFLM 2.664 6.350 (2.89�10�2, 0)

S4 DFLM 2.664 7.184 (�15.63, 0)
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4. Conclusions

By using modal analysis, the exact solution to the second harmonics of a SH mode was
successfully derived under second order perturbation. The second-harmonic fields of a SH mode
can be expanded as a series of DFLMs. The contribution of each DFLM component to second-
harmonic fields of a SH mode is dependent of the difference of phase velocities of the SH mode
and the corresponding DFLM. The DFLM field component has a cumulative growth effect as its
phase velocity exactly or approximately equals that of SH mode. On the other hand, its
contribution to the total second harmonics may be neglected if the phase velocity of SH mode is
quite different from that of the DFLM component. It is found that only the symmetric DFLM
component can be generated. Therefore, the field of second-harmonic generation of a SH mode is
symmetrical. This work presents an exact analysis approach for investigating the problems of
generation of the second harmonics of guided wave modes.
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Appendix A

The components of u
ðLÞ
ðnÞ ðyÞ; i.e., u

ðLÞ
ðnÞyðyÞ and u

ðLÞ
ðnÞzðyÞ; are given by

u
ðLÞ
ðnÞyðyÞ ¼ cos yðLÞðnÞL exp þjaðLÞðnÞLk

ðLÞ
ðnÞ y

h i
� BðnÞ1 sin yðLÞðnÞT exp þjaðLÞðnÞT k

ðLÞ
ðnÞ y

h in
�BðnÞ2 cos y

ðLÞ
ðnÞL exp �jaðLÞðnÞLk

ðLÞ
ðnÞ y

h i
þ BðnÞ3 sin yðLÞðnÞT exp �jaðLÞðnÞT k

ðLÞ
ðnÞ y

h io
;
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u
ðLÞ
ðnÞzðyÞ ¼ sin yðLÞðnÞL exp þjaðLÞðnÞLk

ðLÞ
ðnÞ y

h i
þ BðnÞ1 cos y

ðLÞ
ðnÞT exp þjaðLÞðnÞT k

ðLÞ
ðnÞ y

h in
þBðnÞ2 sin yðLÞðnÞL exp �jaðLÞðnÞLk

ðLÞ
ðnÞ y

h i
þ BðnÞ3 cos y

ðLÞ
ðnÞT exp �jaðLÞðnÞT k

ðLÞ
ðnÞ y

h io
;

with

K
ðLÞ
ðnÞQ1

��� ��� ¼ K
ðLÞ
ðnÞQ2

��� ��� ¼ K
ðLÞ
Q ¼ 2o=cQ; k

ðLÞ
ðnÞ ¼ K

ðLÞ
Q sin yðLÞðnÞQ; cos yðLÞðnÞQ ¼ aðLÞðnÞQ sinyðLÞðnÞQ;

aðLÞðnÞQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
ðLÞ
ðnÞ =cQ

h i2
�1

r
; Q ¼ T ;L;

where u
ðLÞ
ðnÞL1 ¼ 1; BðnÞ1 ¼ u

ðLÞ
ðnÞT1=u

ðLÞ
ðnÞL1; BðnÞ2 ¼ u

ðLÞ
ðnÞL2=u

ðLÞ
ðnÞL1; and BðnÞ3 ¼ u

ðLÞ
ðnÞT2=u

ðLÞ
ðnÞL1; u

ðLÞ
ðnÞLi and u

ðLÞ
ðnÞTi

(i=1, 2) are the amplitudes of u
ðLÞ
ðnÞLi and u

ðLÞ
ðnÞTi; B(n)1, B(n)2 and B(n)3 can be determined after the nth

DFLM is given; Q ¼ L or T means that the corresponding physical quantity is associate with
longitudinal or transverse wave. There are relations: BðnÞ2 ¼ 71; and BðnÞ1 ¼ 7BðnÞ3: Here ‘+’
and ‘�’ correspond to the symmetric and antisymmetric cases, respectively.

The components of Tn are

TðnÞyzðyÞ ¼ jk
ðLÞ
ðnÞ M1 exp þjaðLÞðnÞLk

ðLÞ
ðnÞ y

h i
þ BðnÞ1M2 exp þjaðLÞðnÞT k

ðLÞ
ðnÞ y

h in
�BðnÞ2M1 exp �jaðLÞðnÞLk

ðLÞ
ðnÞ y

h i
� BðnÞ3M2 exp �jaðLÞðnÞT k

ðLÞ
ðnÞ y

h io
;

TðnÞzzðyÞ ¼ jk
ðLÞ
ðnÞ M3 exp½þjaðLÞðnÞLk

ðLÞ
ðnÞ y
 þ BðnÞ1M4 exp½þjaðLÞðnÞT k

ðLÞ
ðnÞ y


n
þBðnÞ2M3 exp½�jaðLÞðnÞLk

ðLÞ
ðnÞ y
 þ BðnÞ3M4 exp½�jaðLÞðnÞT k

ðLÞ
ðnÞ y


o
;

where M1 ¼ 2m cos yðLÞðnÞL; M2 ¼ m sin yðLÞðnÞT ½a
ðLÞ2
ðnÞT � 1
; M3 ¼ aðLÞðnÞL cos yðLÞðnÞL½k� 2m=3
 þ sinyðLÞðnÞL½kþ

4m=3
; and M4 ¼ 2m cos yðLÞðnÞT :
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